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 As the world of Information Systems (IS) and Information Technology (IT—the two 

collectively referred to hereafter as “IT/IS”) expands and takes on new types of roles, 

responsibilities, and projects, the market for outsourcing these activities grows and evolves too. 

Gone are the days where “the IT department” was just the nerdy guys in some closet tucked 

away in the office who got your email to work again. A modern IT department is expected to not 

only support an organization’s technology, but also carry out Business Analytics (BA), Business 

Intelligence (BI), and Digital Transformation. With so many new roles, IT departments, and even 

directors and executives above these departments, often look outside the organization, where 

they encounter low-code and no-code products (commonly referred to as just “low-code.”) These 

low-code products offer tempting, “easy,” solutions to pressing problems. Low-code products 

allow non-technical or minimally technical people to create entire applications with minimal 

code writing, most of it being generated. Instead, the user creates the app through a graphical, 

oftentimes drag-and-drop process, which is deceptively easy. Some proponents of low-code say 

this is for the better: it liberates software development to the non-technical masses, so that 

business leaders can focus on other important aspects of their product and their strategy (Owens). 

However, other say these products are often too good to be true—they typically invite more 

problems than they solve (Little). Between these two stances, I would argue that low-code is 



plagued with issues when used as freely as custom code. Some of the worst offenders related to 

low-code products are vendor lock-in, a lack of scalability, and challenges integrating the low-

code product with the rest of the codebase. These problems often lead to more man hours, costs, 

and issues than that which would’ve been needed for a custom coded solution. 

 Vendor lock-in is an issue that occurs when an organization becomes overly reliant on 

product that is typically provided on a subscription basis. This issue can apply to many different 

fields, but in tech it is especially prevalent because of over-reliance on Software as a Service 

(SaaS) and Platform as a Service (PaaS) product models. These products are usually cloud-based 

software products, such as simplified development environments or simply pre-built 

applications, that are only made accessible through a subscription—some common examples of 

this business model are Microsoft Office or Adobe product suites. This creates an issue where the 

organization cannot break from the product (or the “vendor”) without significant work being 

done and without accruing significant cost in time and money to transition the business away 

from the vendor (Forbes). Normally, this is not an issue if the product is reliable and well-made, 

future-proof, and workable—like the previously mentioned software examples. But low-code 

software typically does not consider scaling and workability in its design principles (Klezcz). As 

a result, when a business inevitably has to transition away from software that was very likely 

doomed to fail, it results in unnecessary reworking and remaking of product (Levinson 17). Even 

if the SaaS or PaaS solution works in the long-term, the longer a business works with and 

develops on said solution, the deeper their lock-in gets—that is to say, as a business builds itself 

around a subscription service, removing that service will only get harder the longer the business 

waits to do so. For many, this effectively puts businesses at the whims of the vendors, who make 

them choose between dedicating man hours and funding towards transitioning away, or putting 



up with issues like downtime, price fluctuations, and third-party support personnel. Vendor lock-

in is a real issue, both inside and outside IT, and only exacerbates other issues that low-code 

brings. 

 Another critical pitfall is the lack of scalability in low-code applications. Scalability is a 

required feature of production applications—it’s the application’s systems’ ability to change in 

deployment scale depending on the load or demand for that application. When it comes to low-

code applications, especially those built on PaaS solutions, the scale of deployment is usually not 

in control of the business, and instead is automated to some extent by the platform. This is a 

fundamental limitation that acts as a barrier for any low-code application to be used in a 

development environment (Klezcz). For this reason, low-code can see some benefit in 

prototyping and early development stages, such as for testing a concept, an MVP (minimum 

viable product), or a feature. However, most PaaS platforms cannot handle deployment stress 

beyond a certain point, and failing to consider this pitfall may leave the business struggling with 

availability issues if the computing behind the application gets overwhelmed. When this issue is 

encountered, there’s not much that can be done to get out of it, besides drop the development 

platform, but that comes with the pitfalls of vendor lock-in, meaning that for a production 

release, the application should undoubtedly be developed as custom code with a scalable back-

end. 

 Lastly, low-code often comes with tough integration challenges, as without an open 

source code, efforts to integrate a low-code front-end or back-end with existing systems and 

codebases can be very difficult. Most notably, low-code systems often generate poor-quality, not 

human-readable, not easily to modify database—or backend— code, according to Nick Scialli, a 

senior software engineer at Microsoft. This poses an issue to developers on the existing 



codebase—how do they integrate a database that is made of “spaghetti-code,” written in a way 

that they can’t read or understand how it works, and in a way that violates much of the 

company’s standard practices when programming. Integrating a low-code product with a custom 

coded database is very difficult—nearly impossible. Moreso, the Department of Health and 

Human Services faced challenges, and eventually delays, when trying to link the custom coded 

existing code by DHHS with the low-code generated code from one of their contractors, 

resulting in the Healthcare Marketplace website being down intermittently for months while 

engineers tried to patch things up (Levinson 17-18). 

 As previously stated, Klezcz considered low-code a viable tool for prototyping, which I 

concede. In an environment that is temporary, without production strains, and solely for trying 

out ideas and creating concepts, low-code can be a powerful tool that eliminates overhead for 

writing code that will probably just be rewritten anyways. However, low-code still falters in the 

ways stated above, by folding under demand, creating inefficient code, and turning into vendor-

lock in when overused. All the issues with low-code stem from using it as a production tool and 

not as a development tool, which is where it belongs. 

 All things considered, low-code’s popularity stems from its claims to timesaving, cost 

reduction, and ease of use, and while these things are true, they are also potential pitfalls. It was 

seen with the Healthcare Marketplace that overuse of a similar solution lead to incompatibility 

and production issues, eventually leading to the codebase being rewritten. Its timesaving abilities 

are not completely worthless—in a situation where the stresses of a userbase demanding a 

product and the need for a product to integrate with other programs is not critical, low-code 

shows its worth. These situations include concept testing, app prototyping, and overall early 

development stages of a program. Whereas these early prototypes would normally be rewritten 



later in the development stage, they can instead be put together easily with a low-code solution 

so that a custom-code solution can be written later on, based on the low-code. 
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